
Introduction to Data Structures
 The main objective of this chapter is to explain the importance of data
structures. Before discussing data structures, we will see some basic concepts.

1.1 Variable
 In computer science, a variable is used to
store or hold data. This data is of any type, for
example integer, float, character, string etc…

EX: int a=20;

Where ‘a’ is a variable of type integer representing the data,
holds value of 20. This data is available to compiler during
execution of the program.

 However, variables are not feasible to store or handle huge amount of data.
Consider an example, if you want to store and access student information such as
student name, roll number, section, subjects and marks obtained for each student
with single variable it is not feasible task. So, we need an organised mechanism to
handle any correlated information. Thus, the concept of data structure has been
introduced.

1.2 Data Structure

 Based on the above discussion, we need some mechanism for manipulating
data efficiently to solve problems. Data Structure is a way of storing and
organizing data (that are related to each other) in a computer so it can be used
efficiently.

Depending on the organisation of data elements, data structures are classified into
two types.

1. Linear data structure: Data elements of this data structure are accessed in a
sequential order but it is not compulsory to store all elements sequentially
(Example of this data structure is Linked Lists).
Examples: Arrays, Linked Lists, Stacks and Queues.

2. Non- linear data structure: Elements of this type of data structure are stored/
accessed in a non-linear order.
Examples: Trees and graphs

1.2 Recursion
 Any function which calls itself is called recursive function. Recursion is useful
technique which was borrowed from mathematics. Recursive code is generally
shorter and easier to write. Generally, loops are turned into recursive functions when

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

they are compiled. Recursion is most useful for tasks that can be defined in terms of
similar subtasks. For example: sort, search, and tree traversal problems.

1.3 Abstract Data Types
 The primitive (system) data types like, integers, character, float, double etc are
used to access data. It supports basic operations like addition, subtraction,
multiplication etc. Suppose an example, to access data from array then we need to
define index with square bracket notation. For user defined data type also we need to
define operations to access data. The implementation for these operations actually is
useful when we want to use them.

 To simplify the process of solving large problems, we generally combine the
data structure along with their operations and are called Abstract Data Types
(ADTs). An ADT consists of two parts.

1. Declaration of data
2. Declaration of operations.

Examples for ADTs include: stack, linked lists, queue, tree etc. To perform push and
pop operation on stack, we need to define operations like: push an element into
stack, pop an element from stack and check whether stack is full or empty etc. These
implementation procedures come into picture when we want to use them.

1.4 Dynamic Memory Allocation

 In C language, the sizes of an array to be specified (to store elements) at
compile time. This may cause failure of the program or wastage of memory space.
The process of allocating memory at run time is called dynamic memory
allocation. Although ‘C’ doesn’t support this facility, there are four library routines
known as memory management techniques under stdlib.h, which can be used for
allocating and freeing memory during program execution. Memory allocation
functions listed in below table.

Function Task
Malloc Allocates requested size of bytes and returns a pointer to the

first byte of the allocated space.

Calloc Allocates space for an array of elements, initializes them to
zero and then returns a pointer to the memory.

Free Frees the previously allocated memory.

Realloc Modifies the size of previously allocated space.

Table: Memory Allocation Functions

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Memory Allocation Process: Before discuss about these functions, let us look at
the memory allocation process associated with a C program. Figure shows the
conceptual view of storage of a C program in memory.

Figure: Storage of a C program

 The program instructions, global variables and static variables are stored in
region known as permanent storage area and local variables are stored in
another area called stack. The memory space between these two regions is available
for dynamic allocation during execution of the program. The free memory region is
called heap. The size of the heap keeps changing during execution, due to creation
and deletion of variables that are local to functions and blocks. Therefore it is
possible to encounter memory “overflow” during dynamic allocation process. In such
situations memory allocation functions mentioned above return a NULL pointer
(When they fail to locate enough memory requested).

Malloc (Allocating Block of Memory)

 This name stands for memory allocation. The function malloc () reserves a
block of memory of specified size and returns a pointer of type void(which can be
casted into pointer of any type) to the first byte of the allocated space. Its contents
can be accessedthrough pointer only.

Syntax:

ptr = (cast-type*) malloc(byte-size);

ptr is a pointer of type cast-type. The malloc returns a pointer of cast-type to an area
of memory with size byte-size.

Example:

X= (int*)malloc (100*sizeof (int);

On successful execution of this statement, a memory space equivalent to “100 times
the size of int” bytes is reserved and the address of the first byte of the memory
allocated is assigned to the pointer x of type int.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Similarly, the statement allocates 10 bytes of space for the pointer cptroftype char.

cptr=(char*)malloc (10);

We may also use malloc to allocate space for complex data types such as
structures. Example:

st_var = (struct store*)malloc(sizeof(strcut store));

Where, st_varis a pointer of typestruct store.

C Program:

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

void main(){

intn,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc

if(ptr==NULL)

 {

printf("Error! memory not allocated.");

exit(0);

 }

printf("Enter elements of array: ");

for(i=0;i<n;++i)

 {

scanf("%d",ptr+i);

sum+=*(ptr+i);

cptr

Address of
first byte

10 bytes of space

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 }

printf("S

free(ptr)

}

OutPut

Calloc (

 C
requesti
such as a
calloc a
zero.

Syntax

T
elem-siz
of the a
returned

Examp
variable

struct st

 ch

 fl

 lo

};

typedefs

Sum=%d",s

);//dealloca

t:

(Allocatin

Calloc is a
ing multiple
arrays and
allocates mu

:

The above s
ze bytes. All
allocated re
d.

ple: The foll
.

tudent{

har name[2

loat age;

ongintid_nu

struct stude

sum);

ating the m

ng Multipl

another t
e blocks of
structures.
ultiple bloc

ptr = (ca

statement
l bytes are i

egion return

lowing segm

25];

um;

ent record;

memory of a

le Blocks o

ype of me
memory sp
. While ma
cks of storag

ast-type*)

allocates c
initialized t
ned. If the

ment of pro

n pointer

of Memor

emory alloc
pace at runt
alloc allocat
ge, each of

) calloc(n,

contiguous
to zero. And
ere is not e

ogram alloc

ry)

cation fun
time for sto
tes a single
the same si

elem-size

space for
d a pointer
enough spa

ates space f

ction and
oring derive
e block of st
ize, and set

e);

n blocks,
returns to t

ace, a NUL

for a structu

is used fo
ed data type
torage space
ts all bytes t

each of siz
the first byt

LL pointer

ure

or
es
e,
to

ze
te
is

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

record* st_ptr;

int class _size=30;

st_ptr=(record*)calloc(class_size,sizeof(record));

…….

…….

record is of type struct student having three members: name, age and id_num.
The calloc allocates memory to hold data for 30 seconds; we must sure that
requested memory has been allocated successfully before using st_ptr. This may be
done as follows:

if(st_ptr==NULL){

 printf(“Insuffient memory”);

 exit(1);

}

C program:

#include<stdio.h>

#include<stdlib.h>

void main(){

intn,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)calloc(n,sizeof(int));//memory allocated using calloc

if(ptr==NULL)

 {

printf("Error! memory not allocated.");

exit(0);

 }

printf("Enter elements of array: ");

for(i=0;i<n;++i)

 {

scanf("%d",ptr+i);

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

sum+=*(ptr+i);

 }

printf("Sum=%d",sum);

free(ptr);// deallocates the allocated memory

}

Free (Releasing used Space)

 Dynamically allocated memory using either malloc() or calloc() must be
explicitly released using this function. The release of storage is very important when
the storage is limited.

free(ptr);

Where, ptr is a pointer to a memory block which has already been created by malloc
or calloc. Use of an invalid pointer in the call may create problems and cause system
crash.

Realloc (Altering the size of block)

 If the allocated memory is insufficient and an additional space is required for
more elements or if in other case, the memory allocated is much larger than
necessary and we want to reduce it, in both cases we can change the memory size
already allocated with the help of the function realloc. This process is also called
“reallocation of memory” . For example, if the original allocation done by the
statement

ptr= malloc(size);

Then, the reallocation of space done by the statement,

ptr=realloc(ptr, new_size);

 The function allocates a new memory space of size new_size to the pointer
variable ptr and returns a pointer to the first byte of the new memory block. The new
size may be larger or smaller than original size.

***Note: The new memory block may or may not begin at the same place as the old
one. In case it fails to locate the additional space in the same region then it will create
the same in an entirely new region and move the contents of the old block into the
new block. The function guarantees that the old data will remain intact.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

C Progr

#include

#include

void ma

int *ptr,

printf("E

scanf("%

ptr=(int

printf("A

for(i=0;i

printf("%

printf("\

scanf("%

ptr=(int

for(i=0;i

printf("%

}

Output

ram:

e<stdio.h>

e<stdlib.h>

in(){

i,n1,n2;

Enter size o

%d",&n1);

t*)malloc(n

Address of p

i<n1;++i)

%u\t",ptr+i

\nEnter new

%d",&n2);

t*)realloc(p

i<n2;++i)

%u\t",ptr+i

t:

>

of array: ");

n1*sizeof(int

previously

i);

w size of ar

tr,n2);//re

i);

t));//initial

allocated m

rray: ");

allocate me

lly allocated

memory: ");

emory for p

d memory u

previously in

using mallo

nitialized ar

oc

rray.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

****Difference between Static and Dynamic Memory
Allocation

Sl. NO. Static memory Allocation Dynamic Memory Allocation

1. In static memory allocation, user
requested memory allocated at
compile time.

In Dynamic memory allocation,
user requested memory allocated
while executing the program i.e. at
run time.

2. Memory size can’t be modified
while execution.
Example: Array

Memory size can be modified while
execution.
Example: Linked Lists

***Difference between Malloc and Calloc:

Sl. No. Malloc Calloc
1. This function used to allocate

single block of memory of
requested size.

This function used to allocate
multiple blocks of memory of
requested size..

2. Malloc doesn’t initialize the
allocated memory (returns void
pointer). Contains garbage
values.

Calloc initializes the allocated
memory with null values.

3. Malloc take one argument which
is the number of bytes to allocate.

Calloc takes two arguments, one
being the number of elements and
the other being the number of bytes
allocated to each element.

4. int *ptr;
ptr = malloc(10 * sizeof(int));
For the above, 10*4 bytes of
memory only allocated in single
block.
Total = 40 bytes

int *ptr;
Ptr = calloc(10, 10 * sizeof(int));
For the above, 10 blocks of memory
will be created and each contains
10*4 bytes of memory.
Total = 400 bytes

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

